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Abstract

A gauge principle is applied to �ows of a compressible ideal �uid. First, a free-1eld Lagrangian is de1ned
with a constraint condition of continuity equation. The Lagrangian is invariant with respect to global SO(3)
gauge transformations as well as Galilei transformation. From the variational principle, we obtain the equation
of motion for a potential �ow. Next, in order to satisfy local SO(3) gauge invariance, we de1ne a gauge
1eld and a gauge-covariant derivative. Requiring the covariant derivative to be Galilei-invariant, it is found
that the gauge 1eld coincides with the vorticity and the covariant derivative is the material derivative for the
velocity. Based on the gauge principle and the gauge-covariant derivative, the Euler’s equation of motion is
derived for a homentropic rotational �ow. Noether’s law associated with global SO(3) gauge invariance leads
to the conservation of total angular momentum. This provides a gauge-theoretical ground for analogy between
acoustic-wave and vortex interaction in �uid dynamics and the electron-wave and magnetic-1eld interaction
in quantum electrodynamics.
c© 2003 Published by The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.
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1. Introduction

A guiding principle of the gauge theory is that laws of physics should be expressed in a form that
is independent of any particular coordinate system. Typical examples of its successful application
are the Dirac equation and the Yang-Mills equation in the quantum 1eld theory.
Study of �uid �ows is considered as a 1eld theory in Newtonian mechanics, more precisely,

a 1eld theory of mass �ows which are invariant under the Galilei transformation. It is gener-
ally accepted that investigation of vorticity dynamics is essential for full understanding of �uid
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motions. On the other hand, there are various similarities between �uid dynamics and electromag-
netism. One representative example is the law between the velocity 1eld and vorticity 1eld which is
equivalent to the Biot–Savart law in electromagnetism between the magnetic 1eld and electric current.
Another is the scattering of acoustic (or water) waves by a tubular vortex (Kambe and Mya Oo, 1981;
Berry et al., 1980; Umeki and Lund 1997; Coste et al., 1999), which is analogous to the inter-
action of electron-waves impinging on a tubular magnetic 1eld (Peshkin and Tonomura, 1989).
One may ask whether the similarities are merely an analogy, or have a solid theoretical back-
ground.
Let us consider the scenario of the gauge principle in the quantum 1eld theory (Frankel, 1997;

Quigg, 1983). First, a free-particle Lagrangian is de1ned in such a way as invariant under the Lorenz
transformation. Next, a gauge principle is applied to the Lagrangian, requiring it to have a symmetry,
namely, global and local gauge invariance. Thus, a gauge 1eld such as the electromagnetic 1eld is
introduced to satisfy the local gauge invariance for which the gauge group is the group U (1),
whereas the relevant group for the Yang-Mills 1eld is the Lie group SU (2). In the present problem,
the gauge group relevant to �uid �ows is considered to be the rotation group SO(3).
A gauge theory of rotation invariant Lagrangian with an internal O(3)-symmetry was developed

for the Bohr model of nuclear collective rotation of a 1nite number of modes (Fujikawa and Ui,
1986). There is a similarity between this system (of 1ve 1eld variables) and the �uid �ows (of
in1nite dimensions). In particular, both systems are considered a dynamical system, in other words,
so-called d=1 1eld theory in the sense that the gauge 1eld is de1ned for the covariant derivative of
time evolution only. The gauge 1eld of the nuclear collective rotation was found to be the angular
velocity.
In the present paper, we seek a scenario in a �uid �ow which has a formal equivalence with

the gauge theory. In order to go further, we de1ne a Galilei-invariant free-1eld Lagrangian for �uid
�ows and examine whether it has global and local gauge invariance. It will be found below that the
gauge 1eld of a �uid �ow coincides with the vorticity.

2. Free-�eld Lagrangian of �uid �ows

Suppose that a free-1eld Lagrangian of �uid �ows in a 3D subdomain M 3 ⊂ R3 is given by

�f [v; �; 	] =
∫
M 3
d3x

[
�(x)

(
1
2
〈v; v〉 − �(�)

)]
+
∫
M 3

d3x 	(x) [@t�+ div(�v)] ; (1)

(Herivel, 1955; Serrin, 1959), where 〈v; v〉 = (v1)2 + (v2)2 + (v3)2 is a scalar product of a velocity
1eld v(x; t)= (vi), � the �uid density, �(�) the internal energy per unit mass, 	(x) a scalar function
acting as a Lagrange multiplier, and @t = @=@t, with x∈M 3 and t the time. The �uid is assumed to
be homentropic, i.e. the speci1c entropy s is uniform in space. It is shown in Appendix A that the
1rst term in the Lagrangian �f is regarded as invariant with respect to the Galilei transformation
according to the prescription that it is replaced by �(0)

L dt of (15) when necessary.
The action principle for a �uid �ow is given by �A = 0, where A =

∫ t2
t1

�f [v; �; 	] dt with a
1xed condition at both ends of the t integration. Independent variations are taken for the Eulerian
variables: 	, v and �. The variational principle �A= 0 for independent arbitrary variations �v, �	
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and �� results in the following three expressions:

v= grad	; @t�+ div(�v) = 0; 1
2v

2 − h− @t	− v · grad	= 0; (2)

respectively (Serrin, 1959), where h = � + � d�=d� = � + p=� (since d�=d� = p=�2 with s 1xed) is
the speci1c enthalpy. Note that dh = (1=�) dp with s 1xed (p: the pressure). The 1rst equation
represents that the velocity v has a potential 	. The second is just the continuity equation for a
compressible �uid. The third equation corresponds to an integral of the equation of motion. In fact,
applying ‘grad’ to the third of (2) and using v = grad	, we obtain the Euler’s equation of motion
for a potential �ow of an ideal �uid

@tv+ grad(12v
2) =−grad h; where grad h=

1
�
gradp: (3)

It can be shown that both of the left-hand side of (3), de1ned by

Dtv := @tv+ grad(12v
2); (4)

and its right-hand side are Galilei-invariant, respectively.
The velocity 1eld v(x; t) thus obtained is irrotational since the vorticity is given by curl v =

curl(grad	) = 0. Regarding the irrotational 1eld, the following observation would be of some sig-
ni1cance. It is well-known that a �ow of a super�uid is described by a velocity potential in the
ground state and the motion is governed by the equation of an ideal �uid in the form of (3) for
a homentropic �uid (Landau and Lifshitz, 1987, Chapter XVI). Therefore, the super�uid �ow is
irrotational. The vorticity signi1es rotational motion of �uid, i.e. local rotation of �uid material.
However, if particles are equivalent and indistinguishable such as the super�uid He4, the rotational
motion would not be captured. 1 Therefore the �ow would be irrotational. This is not the case when
we consider the motion of a �uid composed of distinguishable particles such as in an ordinary �uid.
Local rotation is distinguishable and there must be a formal structure to take into account the local
rotation of �uid particles. This is considered in the next section.

3. Gauge transformation and covariant derivative

In the gauge principle, a free-1eld Lagrangian �f is required to be invariant with respect to a global
gauge transformation. 2 Regarding the gauge transformation of �uid �ows, the relevant structure
group is the rotation group SO(3). 3 This is interpreted as follows. Consider a transformation of
a vector, v �→ v′ = R v with an element R of the group SO(3). Then the scalar product 〈v; v〉 is
invariant with respect to the transformation v �→ v′, i.e. 〈v′; v′〉 = 〈Rv; Rv〉 = 〈v; v〉. Thus, the phase
transformation in the quantum theory is replaced by an isometry transformation of the rotation group
SO(3).
If a proposed Lagrangian is invariant under a global gauge transformation (with a 1xed R) as

well as the Galilei transformation, then the gauge principle demands that a partial derivative @ (if

1 The super�uid He4 obeys Bose–Einstein statistics in which particles are equivalent and indistinguishable.
2 In the quantum electrodynamics, this requires that its form is invariant under a phase transformation of the wave

function,  �→ ei� , where the phase � is a real constant. This keeps the probability density | |2 unchanged. The global
gauge invariance results in conservation of Noether current (Frankel, 1997; Quigg, 1983).

3 SO(3) is the group of all the special linear orthogonal transformations of R3, characterized by det R= 1.
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any) is to be replaced with a covariant derivative including a gauge 1eld �(x); @ → ∇= @+�(x),
so that the derivative ∇ acquires a local gauge invariance.
With respect to the local gauge transformation, we write the transformation at a point x as R(x)=

exp[�(x)] = I + � + O(|�|2), where I is the unit matrix, R∈ SO(3) and � is an element of the Lie
algebra so(3). The � is represented by a skew-symmetric 3× 3 matrix. We consider an in1nitesimal
transformation for which |�|�1. Then, the velocity vector v is transformed as

v(x) → v′(x) = R(x)v(x) ≈ v+ �v= v+ �̂× v: (5)

up to the 1rst order of |�|, where the matrix multiplication �v is replaced by an equivalent form
of a vector product �̂ × v by using an axial vector �̂ associated with the skew-symmetric matrix
�∈ so(3). The scalar product is invariant under the local transformation: 〈v′; v′〉(x) = 〈v; v〉(x).
It is remarkable that the transformed 1eld v′(x) = Rv is rotational, even if v is irrotational. In

fact, one can represent the second term of (5) as �̂× v=curlB+gradf by using a vector potential
B and a scalar potential f, together with the gauge condition div B = 0. Taking curl of �̂ × v, one
obtains

curl(�̂× v) = curl(curlB) =−RB;

where R is the Laplacian. The vector potential B is determined by the equation, RB= (�̂ · grad)v+
(div �̂)v−(v ·grad)�̂−(div v)�̂. Thus, it is found that the gauge transformation introduces a rotational
component to the velocity 1eld. From the fact that the Lagrangian �f is invariant with respect to
local SO(3) gauge transformations as well, we infer that a gauge 1eld may be already known in
�uid dynamics.
It was noted in the introduction that the gauge 1eld � of a dynamical system, such as in the

model of a nuclear rotation (Fujikawa and Ui, 1986), is de1ned only for the derivative with respect
to the time t. This means that the replacement in the present �uid �ows would be of the form,
Dt → ∇t = Dt + �(x) where the derivative Dtv de1ned by (4) denotes the material derivative of a
potential �ow. In fact, we have @i(v2=2) = vk@ivk = (@k	)@i@k	= (@k	)@k@i	= vk@kvi.
According to the scenario of the gauge theory (e.g. Quigg, 1983) the velocity 1eld v(x) and the

covariant derivative ∇tv should obey the following transformation laws:

v �→ v′ = exp[�(t; x)]v; (6)

∇tv �→ ∇′
tv
′ = exp[�(t; x)]∇tv; (7)

where R=exp[�(t; x)] denotes a time-dependent local gauge transformation, and the covariant deriva-
tive is de1ned as

∇tv := Dtv+ �v= @tv+ grad(v2=2) + �̂ × v (8)

and �, �∈ so(3), 4 where �̂ is the axial vector counterpart of �. The third term is determined so as
to be compatible with the gauge transformation and Galilei transformation. From the above equations
(6)–(8), it is found that the gauge 1eld operator � is transformed to �′=e�� e−� − (@t e�) e−�. For
an in1nitesimal transformation |�|�1, we have e�=1+�+O(|�|2). Using �� instead of �, the gauge
1eld �̂ (in vector form) is transformed as

�̂ → �̂
′
= �̂ + ��̂× �̂ − @t(��̂); (9)

4 The property �, �∈ so(3) means that we are considering the principal 1ber bundle.
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up to the 1rst order. The second term on the right-hand side describes the non-Abelian transformation
law such as that of the Yang-Mills gauge 1eld (Quigg, 1983, Chapter 4).
In addition, the covariant derivative ∇tv is required to be invariant with respect to the Galilei

transformation v(x) → v∗(x) = v−U with U a constant vector. This is satis1ed by

�̂ = curl v; �̂∗ = �̂: (10)

Thus, it is found that the vorticity ! = curl v is the gauge 1eld, and that the covariant derivative
∇tv is given by

∇tv= @tv+ grad(12v
2) + !× v= @tv+ (v · grad)v; (11)

which is usually called the Lagrange derivative, or material derivative of v.
According to the gauge principle, the derivative Dtv= @tv+ grad(12v

2) of (3) should be replaced
by the covariant derivative ∇tv. Thus, we obtain the equation, ∇tv = −grad h. This is the Euler’s
equation of motion. In fact, using (11) for ∇tv, we have

@tv+ !× v+ grad(12v
2) =−grad h: (12)

Equivalently, using the last expression of (11) and grad h=(1=�)gradp, we obtain @tv+(v ·grad) v=
−(1=�) gradp. This is to be supplemented with the continuity equation,

@t�+ div(�v) = 0: (13)

4. Conclusion

According to the gauge principle, it is found that the gauge 1eld coincides with the vorticity !,
and in addition, using the gauge-covariant derivative ∇tv, the Euler’s equation of motion (12) is
derived for a homentropic �ow. Taking curl of (12), we obtain the vorticity equation,

@t! + curl(!× v) = 0: (14)

Using the continuity equation (13), this is rewritten as (d=dt)(!=�) = ((!=�) · grad)v. where d=dt =
@t+(v ·grad). Importance of material variation taking into account the motion of individual particles
was pointed out by Eckert (1960) and Bretherton (1970). However, no consideration is given there
on the local gauge symmetry in such a way as done in the present study, and the derivative such
as (11) is assumed as an indentity in Bretherton. Because of the Clebsch representation in Eckert,
the formulation is valid only locally.
There are some byproducts from the present formulation. The Noether’s conservation law as-

sociated with the global SO(3) gauge invariance is found to be the conservation of total angular
momentum. In addition, the Lagrangian has a symmetry with respect to particle permutation, which
leads to a local law of vorticity conservation, resulting in the vorticity equation as well as the
Kelvin’s circulation theorem. Therefore, the above Eq. (14) is a local conservation equation asso-
ciated with a symmetry of particle permutation. Thus, it is found that the well-known equations in
�uid dynamics are related to certain symmetries of the �uid system. The details will be discussed in
a full paper (Kambe, 2003), where it is veri1ed that Hamilton’s principle together with isentropic
material variations and the gauge-covariant derivative ∇tv leads to the Euler’s equation of motion
(12).
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The present formulation provides a gauge-theoretical ground for physical analogy between the
aeroacoustic phenomena associated with vortices (Kambe, 1986; Kambe and Minota, 1987) and
the electron and magnetic-1eld interactions. In particular, there is a close analogy between the
Aharonov-Bohm eSect (Berry et al., 1980; Peshkin and Tonomura, 1989) and the scattering of a
sound (or water) wave by a rectilinear vortex (Kambe and Mya Oo, 1981; Coste et al., 1999).
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Appendix A. Galilei transformation of velocity �eld

The Galilei transformation is considered to be a limiting transformation of the Lorentz transfor-
mation of space–time (x�) = (t; x) as v=c → 0. The Lorenz covariant Lagrangian �(0)

L in the limit as
v=c → 0, is de1ned by

�(0)
L dt =

∫
M
d3x �(x)

(
1
2
〈v(x); v(x)〉 − �− c2

)
dt (A.1)

(Landau and Lifshitz, 1987, Section 133). The third −c2 dt term is not only necessary, but indis-
pensable, so as to satisfy the Lorenz-invariance (Landau and Lifshitz, 1975, Section 87). This term
gives a constant c2M dt to �(0)

L dt, where M =
∫
d3x �(x) is the total mass in the �ow domain. In

carrying out variation of A, the total mass M is 1xed to a constant. In the present analysis, cor-
responding Lagrangian of �uid motion in the Galilei system is given by the 1rst integral of (1). In
this Lagrangian �f , local conservation of mass is imposed. Therefore the mass is conserved globally
as a consequence of local conservation. Only when we need to consider Galilei invariance, we use
the Lagrangian �(0)

L . 5
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